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The effect of partial dissipation on the vibrations of a mechanical system 
near the equilibrium position, which is stable for certain potential forces, 
Is Investigated with the aid of a theorem of E.A.Barbashln and Krasovskll[l] . 

Results obtained In [2] are extended and made more precise. 

The damping coefficients and frequencies of a system with small and large 
dissipation are calculated approximately. 

1. We consider a linear mechanical system near the position of stable 
~qulllbrlum at an Isolated minimum of the potential energy and acted upon 
by dissipative forces with the dlsslpatlon function 

F = - s i ClijX: Xj 

ij=l 

Here Q,, are constants, - F Is a negative-definite form of rank k, which 
Is In general less than n , the number of degrees of freedom, I.e. the dls- 
slpatlon Is not total. 

Let x ,,..., x. be the normal coordinates. The equations of motion have 
the form 

Zi" + Ai'Xi + (ailxl* + a .S + C&X,*)= 0 (i = 1, . s ., n) (1.1) 

Suppose that none of the numbers Al',..., A,’ Is equal to zero, that 
there Is a group of equal numbers X,a- . . . I X,a, and that none of the 
remaining numbers equals x,2. We note that the variables x1,..., xr may 
undergo any orthogonal transformation, and this transformation will affect 
only the dissipation coefficients. 

Let r 

be that part of the dissipation function which depends only on x1* ,..., x,*. 
Reducing It to a canonical form by an orthogonal transformation and retaining 
the old notation for the new variables and coefficients c',, , we obtain 

m<r n 

2 

i>r, j<r 

olijX,‘Xj’ + x ClijX; Zj’ ) 

ij=r+l 
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T h e o r e m 1.1. In order that after addition of the dissipative 
forces the isolated equilibrium position shall become asymptotically stable 
with respect to the normal coordinate xL, belonging to the set xl,...,xt, 
. . ..x. of normal coordinates corresponding to the frequency X,, it is neces- 
sary and sufficient that 

Mr 

the part of the dissipation function depending only on the velocities 
. 

x*1,...> X I, vanish only for x*kP 0 . In the opposite case, the *c,oordlnate 
x* remains unaffected by dissipation and will keep vibrating harmonically 
with frequency X,. 

In order that the equilibrium state shall be asymptotically stable with 
respect to all coordinates, It is necessary and sufficient that all functions 
F, be sign-definite with respect to all variables. For frequencies 1, which 
have the multlplSc.ity of one, this requirement is equivalent to the condition 
Ui,# 0. 

P r.0 0 f . Necessity 
form F, be equal to zero. Without l&s 

Let any coefficient in the canonical 
of generality we will assume that 

it is Qn . 
If al1 - 0 , then the variable xal does not appear at all in the dlssipa- 

tlon function. Actually, we will assume that there appear in F terms of 
the form ~,,lq'x', where 
ting all velodlti!es except 

x*, is=? ;; the velocities (8 # 1); then, set- 
xml , equal to zero, we obtain 

- 2F = 2~~~x1 
. . 4 x8 + a&, 

It Is clear' that if cll# 0 , then F may have any sign, which contradicts 
the assumption that F Is negative-definite. 

Thus, all a,1 
funct%on. 

are zero and r-l will not appear at all in the dissipation 
This means that dissipative terms do not enter Into the first 

equation, and the coordinate xl will be unaffected by dissipation. Thus, 
necessity Is proved. 

Sufficiency From the theorem of Barabashln and Krasovskli 
cl], applied to Equation 

.$T-U)=2F 

(where T is the kinetic energy and II the force function), we conclude 
that any perturbed motion will as t - m asym totlcally'approach either 
some point on the trajectory of Equations (1.1 
the region F = 0 , or the origin (x,- xi* = 0) 

P which lie entirely within 
. 

partial derivatives aF/ax,* 
On this trajectory all 

and all derivatives with respect to time of 
these linear forms will of necessity vanish, by virtue of the equations of 
motion. 

Let x1 correspond to the root X, and let 

LJF -- 
ax1* 

= anzi+ un'(W~+ . . . + u,~‘(hJ 

where u.;(Xp) is a linear form In the velocities x,' corresponding to the 
root X,, and so forth. If the system (1.1) admits of solutions, anlong 
which F - 0 , then all of these solutions must necessarily lie in the.reglon 

aF=O 
ax; ’ 

where these latter derlvatlves must be calculated taking into aCCoUnt Equa- 
tions (l.l), 
tiF/dxl' 

in which we set dF/tix '9 0 
using Equation (l.l), we obtain 

. Calculatlngth? second derivative of 

= w1= a11h1%1'+ a&4;+... + h&,' =o 

Subtracting from the last line kaadF/dxl' , we obtain 

1L'z = an (h1a - haa) zi'+ (haa - haa) Us* + . . . + (hna - l.a2) un’ = 0 
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As a result, we find that the form Q., not containing u2' and containing 
x1*, essentially (alI (A,S - ?Q)#O) must vanish. 

Differentiating this form twice, by virtue of Equations (l.l), we have 

ws = adQ (A2 - W) zi + W (W - haa) ~3’ + . . . + A,% (A$ - A?) un* = 0 

Subtracting h,2~, from it, we obtain 
. 

W~=au(w- lisa)(Al2-- a$)~$-(Q-lt$) ud + I ..== 0 

Extending this process, we come to the conclusion that x1'= 0 , which 
means that' x1- 0, and so forth. Thus sufficiency is proved. 

Note. If there are zeros among the numbers k12,..., An2 and the 
equilibrium position is not an isolated one, then reasoning in the same man- 
ner, we come to the conclusion that all normal coordinates and velocities 
corresponding to a nonzero frequency will either vanish with time or oscil- 
late. 

For the group of variables corresponding to A,- 0 , we obtain 

Qr121'=. .I =amm~m’=o, rJ=cl,..., Tm”Cm 

If m =r, then the motion will asymptotically approach the equilibrium 
position xl =cl,,.., x, = cm; if m<r, then %+I = "o,m+1 

t + Cm+l , etc. 

It is not difficult to note that if the necessary and sufficient condi- 
tlons for asymptotic stability of a linear system are fulfilled and none of 
the frequencies are zero, then asymptotic stability is preserved when any 
higher-order terms are added. The property mentioned in the note may be 
violated in a nonlinear system. 

2, We assume that the dissipation function contains a small multiplier 
S and has the form F = SFi, while the dissipative forces become sdFlidq*, 
where dF, / dxi* NOW 
let y,'~.i.s X*' 

are comparable .in magnitude to the potential forces. 
be the variables corresponding to the frequency x1 . we 

will seek a root of the characteristic equation of the form 

IL1 = bli + UlS + Lisa (i = v’=T) 
Substituting it into the characteristic equation of the 

introducing the Kronecker symbol 6,J , we obtain 

II sij (P 4 W) + puij II = n = 0 

whence we obtain, accurate to order Sap 

I An . I - 0 Ulr+&is . . . al,hlis 

. . . . . . . . . . . . . ..(I.... .., 
0 A 

l '* pr A=, 
ap,+lhlis . . . a&&s 

j,a,,+&is. . . a,,+lhlis A:+,-W. . . 0 

. . . . ***.t.*..*.**.r~r*. 
a&is . . . a,h& 0 . . . &*a - hl 

where 

system (1.1) and 

= 0 

A jj = (2a1+ ag) hiis + kiss (j = I, , . ., r); (kl = ~1% - alalx i_ 2~~~~~) 

Removing the multiplier X,f,s from the first r rows, we obtain 

A =(tis)' (2a1-+ cm). . . (2al+ a,,) (h':,, - %~~)...(h,~- ?$)+ 0 (sr) = 0 

whence a2 = l/a all, . . ., nip =I %a,, (2.1) 

If none of the quantities a1, ,..., art are equal, then in a Similar man- 
ner the following equation for determining k, is easily obtained: 

kr 
-hla at,?++1 *** 0 %a I 
3, r+1 

h;+l-hl% 0. . . 0 =o 
. . ..**.....-f-e... 

%?% 
0 0 . . . x,s d ala 
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Hence we obtain kl -a- aL+1 %' 
W A,:,-hla-"'-h+W 

But on the other hand 

b= cl2 - c~cll+ 2Mli = -l/,al~++l~li 
Solving for b,, 

and similarly 

As a result, we come to the conclusion that if none of the coefficients 
of the canonical quadratic form Fr corresponding to the variables xl*,... 
. . . . x; and frequency X, are equal, then the characteristic exponent takes 
the form n 

accurate to terms of order e3. 

3. We shall now consider the effect of large dissipation with a disslpa- 
tlon function F of the form 

Here 8 Is a small is the rank of the form F , which 
is negative definite with respect'to zl*,..., zk* the linear forms of the 
original velocities. We shall also assume that i makes the Initial equl- 
librlum position asymptotically stable. Let s'; ,..., E; be expressed In 
terms of the canonical momenta of the system by 

zi*=e. aT+...+e. 2x_ 
*l az,* tn ax*- 

(i = 1,. . ., k) 

Consider the change of variables 

Xj = Bl,j Yl + * . * + @f~Yfi + * ’ * + &,jY, (3.2) 

where il 8 

ei, are a 
tlon (3.2 

L’ * - * 9 'in('dk) are taken from Formula (3.1), while the remaining 
rbltrary and are related only by the condition that the transforma- 
') be nonsingular. In the new variables we have the equality 

e = ei1 g + . . . + ein g = z; (i = 1, . . . , k) 
n 

Replacing Y1',..., y,'by z;,..., E; according to Routh's theorem [3], we 
find that the kinetic energy takes the form 

T = Tl(zl:, . . . , zk')+ Ta(Yk+;, . . . . Y;) 

In the variables Hi',..., 2; , y,,,,..., vn* and does not contain products 
Y*'r l . Roth quadratic forms T, and T, will be positive definite functions 
of t h e vardables appearing In them. Therefore the forms T, and F may, by 
a simultaneous transformation, be reduced to a sum of squares 

2T1=~1’+...+z~‘~, -2sp = allzl’a + . . . + akkzk4 

Let the force function II take the form 

U = U1(Zl, . . . , Zk) + US (zjt Yi) + US (Yk+l, * * * 9 Y J 

In the variables Z1r . - *, 
variables 

Zkr yk+,1, * - . , yn, , where II, depends only on the 
a,,..., Zk ; U,contalntr ohly the products z,Y, , and U3 only 

the variables Y~+~,..., I/,. The term U, Is a negative definite quadratic 
form of Its variables, which may be simultaneously reduced with T'a by an 
orthogonal transformation to a sum of squares 
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2Ta = yk;; + . . . + ~,,*a, 2Us = - vk+;yk+; - . . . - %??I,,~ 

Retaining the old notation for the new variables, we remember, however, 
that all the derivations which have been carried out refer to the coeffici- 
ents of the system of equations In which the Mnetlc energy T , the poten- 
tial function U and the dissipation function F have, with the help of a 
linear substitution, been written in the special form 

2T = ~1.2 + . . . + zke2 + y$ + . . . + y;" 

2u = - & Qjzizj - f,kqG,c %jzjYi - Vk+tYk+: - . . . - vnaYna (3.3) 

- 2sF = U1121’~ + . . . + a&-k2 

Before proceeding with the Investigation, we will prove an 

L e m m a 3.1. If the fntroduction of dissipation makes 
position asymptotically stable, then none of the coefficients 
may be equal. 

auxiliary lemma. 

the equilibrium 
vk+lS' * * * , v,% 

P r o o f . Setting tl= . . . = zk= 0 In Equatlons_(3.3), we obtain 

2T" = yk;;+ . . . +y;“, 2U" = -vk+;yk+;-...-v,2y,S 

Hence it is clear v~+~,..., v. are the principal frequencies of the sys- 
tem which Is obtained from the original system after Introduction of the 
additional constraints zl= . . . = I~= 0 . 

Let Xl, . . . . x. be the normal coordinates of the original system, and 
.?I,..., zk be expressed In terms of xl,..., xn by 

zi = yjIzl + . . . + yinzn 

Differentiating this equation once with respect to time, we obtain 

zi* = rip’* + . . . + rinzn’ (i = 1, . . ., k) 

The dissipation function vanishes for zl*= . . . - zk' = 0 , consequently 
this condition is equivalent to the system 

aF 
-2sarl.=a"Z"+uaf(hz)+... + %l. (h,) = 0 

i?F 
- 2s jjg7 = u,; (k) + . . . + u**’ (A,) = 0 

(3.4) 

The forms ' have already been encountered In Section 1. That part of 
the first row %lch depends on the velocities corresponding to the frequecy 
;io;s fenoted by u&(X,), while z(~~*(X~) denotes the part depending on the 

3 9 and so forth. 
Since z,*- . . . - zk* = 0 is equivalent to the system (3.4), then zl-... 

. . . I Et' o- WI11 

which Is obtained 
coordinates xl,. 

from (3.4) by replacing the velocities x1* ,..., xn' by the 
., -% - Imposing the constraint 

v1 = ally1 + uzl (A,) + . . . + u,~ (A,) = 0 

on the mechanical system, we find, by virtue of a well-known theorem c41, 
that after the constraint vI= 0 has been applied, the frequencies of the 
constrained system will either partition the frequencies of the original 
system, or, In the case of a multiple frequency, part of them will be con- 
served. Thus, if the sum of coefficients of the form ~~(1,) , etc. differs 
from zero, then the multiplicity of the root will be decreased at least by 1. 
Because of this property, it Is clear that if the frequency X, Is preserved 

be equivalent to the system 

a,1z1+ %I (hz) + . . . + %ll(M = 0 

. . . . . . . . . . . . . . . . . . 
Uln (hl) + . . . + u,, (h,) = 0 



1395 

in the new system, then its multiplicity will either be decreased or remain 
unchanged, and the cases where the multiplicity of even one of the preserved 
frequencies is increased, or where two or several of the newly appearing 
frequencies coincide, are impossible. 

Since the conditions of Lemma assume asymptotic stability, then from the 
theoremroof Section l~aitnecessarily follows that alI> 0, since - =F p 
= allxl f . . . + arrX, is positive definite. Consequently, afer applying 
the constraint vl= 0 , the multiplicity of the 'frequency X, is lowered not 
less than 1. Since vl= 0 does not affect the coordinates x2,..., xr, then 
it is clear that the system will have a frequency X1 of multlpl3.clty r - 1, 
hence the lowering of the multiplicity of the root X, is exactly equal to 1. 
Imposing the constraint va= 0 , and noting that the equation u,= 0 does 
not contain xl, x3, . . . . x,, but only xa with the coeffic%ent oS2:, 0 , we 
again obtain a reduction of the multiplicity by 1, and so forth. 

In the end, the system loses the root kl. In exactly the same way we 
prove that it necessarily loses all roots (in the sense that all the frequen- 
cies will be new ones), and we conclude that in a system with the additional 
constraints al= . . . - z~= 0 there are no multiple principal frequancies, 
and consequently v,.+~,..,, V, are all different. 

We now write the equations of motion 

Zi"+ S-laiiZi' + CilZl + * * * f CikZk + cik+lYk+l $_ + * . + cid,, = 0 .(i=i,. ,,k) 

yj” + vj’yj + cjlzl + . . . + cjkzk = 0 (/’ = k + i,. . . , n) 

The characteristic equation has the form 
Ml1 . - .SCltr %+1* * * %a 

.****...*....**. 

1 %I&. . . &f,, 

-7 
=k, ktf * * * sck~ 

‘1, kil’ . . ‘k, k+l@+ V;+1. . .o 

. . . . . . . . . . . . . . . . 

Cl, . . . Ckn 0 . ..p*+v*s 

=o 

&ii = spa + Uijp + SCii (i = 1, 2, a e ., k) 

Seeking roota of this equation of the form 
tLn = f v,i -I- alnS + ae# + O(9) 

we obtain the equation for determining alp. 

I’ v&n 0 * . - 0 0 . . . 0 Qll 
. ..**.*..*.* . . . . . **.*.**..*.. 

0 0 * * . V&f& 0 * . 0 It Ckn 

Cktt. 1 ck+1,2’ . . ck+l, kvk2+1 - %b2. . - ’ ‘k.il.n 

. . . . . f . ..*. . * * *. . . . . . . . *. *. *a 

Q-1, 1 %I-1, 2 * * * %-I, k 0 *.*V1,_,--%~ C,_l,Y 

'nl c,z . . . %k 0 , . * 0 2v,,ionl 

==0 

In the columns numbered fzom k,+ 1 to h - 1 , inclusively, there Is only 
a single nonsero element Vt*1- v. > etc., hence these columns may be deleted, 
together with the corresponding rows. We now multlpl the last row by l/~,t 
and then subtract the first column, multiplied by cl,, v,%i, 31 from the last, 
we multiply the second column by ceh 
so forth. As a result we obtain .. 

I v,nlli and subtract from the last, and 

and similarly 
l 1 

qj = - - 
2Vj’ ( zg + l * . _t $) 

The calculation of 'a,, (the coefficient of s2 In the expansion of the 
pair of roots numbered k + 1, . . . n) shows that all of them will be pllrely 
imaginary. Their formulas are, how&er, rather cumbersome and will not be 
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cited. The remaining pairs of roots of the characteristic equation will be 
sought in the form 

ccj = b,j / s + b,js + 0 (s’) 

Substituting U, into the equation, we easily obtain 

bljl = -ajj, blja = 0 

To find b,, we revert to the original variables Xl,"., 2” and reduce 
the force and dlsslpatlon functions 

2u = -%g Liz?, -2Fs = 2 aiix;xj 
i=l 

by a simultaneous orthogonal transformation to the form 

-2Fs= i ’ *‘a Ctij_ Xi 

i:l i=l 

Let the kinetic energy T take the form 

2T = 2 Aijxyxj” 

in these variables. 

After these transformations the characteristic equation of the system Is 
written In the form 

Here 6,, Is 
equals zero for 

the usual Kronecker symbol, and b,/= b,, lf i, i< k and 
either t or j greater than k . Thus we obtain 

baj = - $'a 

As a result, It Is clear that for large dissipative forces there will 
always exist in the system solutions with small damping, and If the dlsslpa- 
tion 1s partial with rank k < h 
bility, then there exist 2(n - kj 

but It gives the system asymptotic sta- 
oscillatory solutions with exponents 

Pi=*Vji-& (s+ * * m + %)+0(S) (i=k+l,...,n) 
I 

and 2k with exponents 

pjl Z -ajj I S, /.Lj, = --hj"S + 0 (S) 

The first group of these exponents corresponds to strong damping. 
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