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The effect of partial dissipation on the vibrations of a mechanical system
near the equilibrium position, which is stable for certain potential forces,
is investigated with the ald of a theorem of E.A.Barbashin and Krasovskii[1l].

Results obtained in [2] are extended and made more precise.

The damping coefficlents and frequencies of a system with small and large
dissipation are calculated approximately.

1, We consider a linear mechanical system near the position of stable
equilibrium at an isolated minimum of the potential energy and acted upon
by dissipative forces with the dissipation function

n
1 R
F= '—7 Z ;5T T;
1j=1
Here a,, are constants,- F 18 a negative~-definite form of rank #k, which

is in general less than n , the number of degrees of freedom, 1.e. the dis-
sipation is not total,

let x,,..., X, be the normal coordinates. The equations of motion have
the form
;" 4 A2y + (“n”l +.et 0z, )=0 (i=1,...,n) (1.1)

Suppose that none of the numbers 1,2,..., A, 1s equal to zero, that
there is a group of equal numbers A\;?= ..., = 1,2, and that none of the
remaining numbers equals 1,2. We note that the variables x,, may
undergo any orthogonal transformation, and this transformation w111 affect
only the dissipation coefficients.

Let
1 2
= d”xl :L'J

‘l]’*

be that part of the dissipation function which depends only on x;‘,..., x;°
Reducing it to a canonical form by an orthogonal transformation and retaining
the old notation for the new variables and coefficients a,,, we obtain

m<r n
N A . s
F=— —( 2, ;%2 + 2 2 GE T DY) i g )
i=1 i>r, igr ij=r4-1
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Theorem 1.1. In order that after addition of the dissipative
forces the 1solated equilibrium position shall become asymptotlically stable
with respect to the normal coordinate x,, belonglng to the set x,,...,x,
«+es%, Of normal coordinates corresponding to the frequency 1i,, it 1s neces-
sary and sufficlent that

1 mgr
Fp=— = Z oyqx;?
i=]

the part of the dissipation function depending only on the velocities

X% 5ee0s x°,, vanish only for x*,= O . In the opposite case, the :coordinate
x, remains unaffected by dissipation and will keep vibrating harmonically
wlth frequency X,.

In order that the equilibrium state shall be asymptotically stable with
respect to all coordinates, it is necessary and sufficient that all functions
F. be sign-definite wlth respect to all variables. For frequencies 1, which
hav: the multiplicity of one, this requirement is equivalent to the condition
a1 # O,

Proof . Necessity . Let any coefficlent in the canonical
form F, be equal to zero. Wilthout loss of generality we will assume that
it is qy .

If ay = O, then the variable x°, does not appear at all in the dissipa-
tion function. Actually, we wlll assume that there appear in F terms of
the form 20, %,'r,, where x°, is any of the velocities (2 # 1); then, set-
ting all veloéitfes except x*, and x°, equal to zero, we obtain

—2F =2a,,71" x5 - 0ggws?

It is clear that if g¢,,# O , then ¥ may have any sign, which contradicts
the assumption that F 1s negatlve-definite.

Thus, all q,, are zero and x°, wlll not appear at all in the dissipation
function. This means that dissipative terms do not enter into the first
equation, and the coordinate x, will be unaffected by dissipation. Thus,
necesslity is proved.

Sufficiliency From the theorem of Barabashin and Krasovskii
{11, applied to Equation

d
2(T—U)=2F
7 { )

(where T 1s the kinetic energy and U the force function), we conclude
that any perturbed motion will as ¢ - « asymptotically approach elther
some point on the trajectory of Equations (1.1) which 1lie entirely within
the region F = 0, or the origin (x,= x,°= 0) . On this trajectory all
partial derivatives 3F/dx,°® and all derivatives with respect to time of
these linear forms will of necessity vanish, by virtue of the equations of
motion,

Let x, correspond to the root i, and let

— ii- = aner’ 4+ ua’ (M) F - . - 4+ Uy (An)
o

where u,{(x,) is a linear form in the velocities x,* corresponding to the
root \,, and so forth. If the system (1.1) admits of solutions, anlong
which F = 0 , then all of these solutions must necessarily lie in the region
oF _ d (8F)==0
ox; ’ di \dx;"

where these latter derivatives must be calculated taking into account Equa-
tions (1.1), in which we set dF/dx,” = O . Calculating the second derivative of
dF/dx," using Equation (1.1), we obbain

d (aF
- di2 8:::1'
Subtracting from the last line 1,2dF/dx," , we obtain

wp=on (M?—A?) 12"+ (As? — A2 us’ + . . . + (A2 — M) u," =0

) = w1 = anh?r -+ A%ug’ 4. .. + A%, =0
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As a result, we find that the form w,, not containing u,' and containing
xy°, essentlally (o (A3 — A,2) 5= 0) must vanish.

Differentiating this form twice, by virtue of Equations (1.1), we have
ws = Gaha? (Ax? — Ag?) 21" - Ag® (Ag® — Aa?) u” - . - . -+ A (A2 — Ae?) " = 0
Subtracting X,%°w, from it, we obtain .
wy = O1 (A% — As?) (As? — M"‘)‘ﬂﬁ' F (A2 —Agf)ug ... =0

Extending this process, we come to the conclusion that x,°= 0, which
means that x,= O, and so forth. Thus sufficlency is proved.

Note . If there are zeros among the numbers X,?,..., %,? and the
equilibrium position is not an isolated one, then reasoning in the same man-
ner, we come to the conclusion that all normal coordinates and velocities
;:orresponding to a nongzero frequency will elther vanlsh with time or osecil-
ate.

For the group of varlables corresponding to A,= 0 , we obtain

anty'=...=a gz ‘=0, Ty=C1 .y Ty = Oy
If m = r , then the motlon will asymp'totically approach the equilibrium
positlon zy =¢, ..., Ty = ¢,; I m<r, then =z,.,,~= vo,m+1t Cmy1 » ebe.

It is not difficult to note that if the necessary and sufficlent condi-
tions for asymptotic stability of a linear system are fulfilled and none of
the frequencies are zero, then asymptotic stabllity is preserved when any
higher-order terms are added. The property mentloned in the note may be
violated in a nonlinear system.

2. We assume that the dissipation function contains a small multiplier
s and has the form F = 8F,, while the dissipative forces become sdF; [ dxy,
where dF, / dx;* are comparable in magnitude to the potential forces. Now

let x,°s+++s %' be the variables corresponding to the frequency X, . We
will seek a root of the characteristic equation of the form
Wy = Al + azs - bys? (i = V=1

Substituting it into the characteristic equation of the system (1.1) and
introducing the Kronecker symbol 6,, , we obtaln

§18i; (02 + Ai2) 4 psay = A =0
whence we obtain, accurate to order 837
Y ST 0 pqhais o . LA hais

L T e T S S I Y

_ 0 oo Ay o Mis o s Ris

R : . 2 3 =
l'alﬂlxlm' . .a"ukus A‘T+1 M. .. O
0208 s o o Bpphais 0 - Rt
where
Ajj=2ar+az) hiis+ kst (F=1,....7) (k= a®— a4 2bkai)

Removing the multiplier X,is from the first 7 rows, we obtain
A = (i\.;is}" {2a1 4 a1)e o « (203 ) (?s.:‘,“ — Rt} o (A2 — M%) + O (") =0
whence al=3san, ..., 6 =, (2.1)

If none of the quantities gy ..., 0, 8are equal, then in a similar man-
ner the following equation for determining #, 1s easily obtained:

ky
- i U oy Oe oo gy
2 =
Oy pyy Appp—M? 0. .. 0 == 0

¥ B e e ® % e K e s = s s & & & »

U 0 0. .. A2—A2
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2
Hence we obtailn _kx_ _ oy ri1 _ _ Oyn?
A2 A2 — A Ap2 — Ay

But on the other hand
k= a® — ajon 4 2bidai = — 3 Gn’ + Zbﬂ'li
Solving for &,, we have

L2 _ i fon® )
b '—'t ( 2 l.’ M
and similarly n J=r+1
2 2
b P= 4 L (am — M2 Z —*-aw ) etc
bIo B T

As a result, we come to the conclusion that if none of the coeffilcients
of the canonical quadratic form F, corresponding to the variables x,° ...
.e.y X, and frequency X\, are equal, then the characteristic exponent takes

the form n
_ s? /o2 o2
b= gurkifat p(F - 3 )]
i=r+1

accurate to terms of order 82,

3. We shall now consider the effect of large dissipatlon with a dissipa-
tion funetion F of the form

0 k<n
F=TF1=_ 2&1]171 IJ = —— ZB{,Z,Z
ij==1 1J==1

Here 8 1s a small multiplier, % < n 1is the rank of the form F , which
is negative definite with respect to £,%..., 2,°, the linear forms of the
original velocitles. We shall also assume that F makes the initial equi-
librium position asymptotlically stable. Let =2 ,..., z,/ be expressed in
terms of the canonical momenta of the system by

. aT (7] .
W =0y e 40, ZT, (=10 .. k) (3.4)
n
Consider the change of variables
x.=e.y1+...—}-0k]yk+..‘+ﬂnjy" (3.2)

where e,p e+ 8, (i< k) are taken from Formula (3.1), while the remaining
8,y are arbltrary and are related only by the conditlion that the transforma-
tion (3.2) be nonsingular. In the new variables we have the equality

or T T . ,
‘3T=9ug?+...+0in-5$—.=zi (i=1,...,k

Replacing % ..o W' bBY 2 ..., 2, according to Routh's theorem [3], we
find that the kinetlc energy takes the form

T=T1(Zlh,...,Zk)+T2(yk+;’--'vyn.)

in the variables 2z:° ..., 2y 5 Yearseoss y,’ and does not contain products

Both quadratic forms 7; and T, will be positive definite functions
of tfle variables appearing in them. Therefore the forms T, and F may, by
a simultaneous transformation, be reduced to a sum of squares

2Ty =z 4 ...+ 2,2, —2uF =ann?+4 ...+ ak,,zk‘
Let the force function ¢ take the form
U=Us(y-ev 2+ Ug (2 9 + Us Gy, - -+ 5 ¥
in the variables Z1v-- -y % Ypypp -+, Y, , where U, depends only on the
variables 2z;,..., 2 ; Uzcontalns ohly the products 2z,y, , and U, only
the variables y,15..., Y. The term U; is a negative definite quadratic

form of 1ts variables, which may be simultaneously reduced with T, by an
orthogonal transformation to a sum of squares
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M=y i+ oy s ==yt —. . — Vol

Retaining the old notation for the new variables, we remember, however,
that all the derivatlons which have been carried out refer to the coeffici-
ents of the system of equations in which the kinetic energy I , the poten-
tial function U and the dissipation function F have, with the help of a
linear substitution, been written in the special form

2T =224 ... 5yl oyt

k
N N
2U=— Y Gjzizi— 2 ) iy — Vi Wi — - - - — Valiy? (3.3)
ij=1 i>k, i<k
—2sF = anz1® 4 ... 4 akkz‘kz
Before proceeding with the investigation, we willl prove an auxiliary lemma.
Lemma 3.1. If the introduction of dissipation makes the equilibrium

position asymptotically stable, then none of the coefficlents vk+f,.. .,vn2
may be equal.
Proof . Setting z;= ... = z,= 0 1n Equations (3.3), we obtain
. . . o 2
M =y i+ 2U° = — vy, Jyp,f — . — VaYn

Hence it 1s clear wv,+;,..., Vv, are the principal frequencles of the sys-
tem which is obtained from the original system after introduction of the
additional constraints 2z;,= ... = 2,= 0 .,

Let x;,..., Xy be the normal coordinates of the original system, and
Zy5..., Z, be expressed in terms of x;,..., x, by

Z; = Yy %1 + ...+ Vin%n
Differentiating this equation once with respect to time, we obtain

27 ==+ oo Tin® (i=1,...,k)

The dissipation function vanishes for 2;= ,.. = 2z, = 0 , consequently
this condition is equivalent to the system

oF =
2 P onzy’ + ug® (Ae) 4. ..+ up (Ay) =0
(3.4)

aF
— g = W' (M) + ...+ unn’ (M) =0
n

The forms u,,; have already been encountered in Section 1. That part of
the first row which depends on the velocities corresponding to the frequecy
A, 1is denoted by uaf (A,), while wuu°(X,) denotes the part depending on the
root i; , and so forth.

Since z,"= ... = 2z,°= 0 is equivalent to the system (3.4), then z;=...
. = 2,= 0 will be equivalent to the system

ozt + um (M) +- - - -+ tma (Ay) = 0

gy (M) - Aty (A =0

which 1s obtained from (3.4) by replacing the velocities x,’ seee5 Xa by the
coordinates x;,..., X, . Imposing the constraint

vy == oty tuy ) oo Fu,R) =0

on the mechanical system, we find, by virtue of a well-known theorem [4],
that after the constraint v,= 0 has been applied, the frequencies of the
constrained system will elther partition the frequencies of the original
system, or, in the case of a multiple frequency, part of them will be con-
served. Thus, 1f the sum of coefflclents of the form ua(lz) , etec., differs
from zero, then the multiplicity of the root will be decreased at least by 1.
Because of this property, 1t is clear that 1f the frequency X, 1is preserved
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in the new system, then its multipliclity will either be decreased or remain
unchanged, and the cases where the multiplicity of even one of the preserved
frequencies 1s increased, or where two or several of the newly appearing
frequencles colnclde, are impossible.

Since the conditions of Lemma assume asymptotlc stability, then from the
theorem of Section 1, it necessarlly follows that q,,> 0, since _ 28p, =
=g+ ... + apx'? 1s positive definlte. Consequently, afer applying
the constraint wv,= 0 , the multiplicity of the frequency X\, is lowered not
less than 1. S8ince v;= 0 does not affect the coordinates x,,..., x,, then
it is clear that the system wlll have a frequency X, of multiplicity r - 1,
hence the lowering of the multiplicity of the root X, is exactly equal to 1.
Imposing the constraint v,= 0 , and noting that the equation v, = O does
not contaln x;, %3, ..., x., but only x, with the coefficient 5,,> 0 , we
again obtain & reduction of the multiplicity by 1, and so forth.

In the end, the system loses the root Xi;. In exactly the same way we
prove that it necessarily loses all roots (in the sense that all the frequen-
cles will be new ones), and we conclude that in a system with the additional
constraints 2z,= ... = z,= 0 there are no multiple princlpal frequancies,
and consequently Vy,;,..., v, are all different.

We now write the equations of motion

zi" + sz ez o Ciggr - Cipy Vg T Gy, =0 (=1,. Lk

Y vy tepn . 4oz =0 G=k+1,....0
The characteristic equation has the form
My .. -8y $Cippy - ¢ SCpp

P s s 2 =2 s e & & & & 0 s 2 * .

1] sag... My, sy, Kepc $Cp

1, k+1 - - Sk, B2 \?ﬁﬂ ...0

Uy .. Cpp 0 L..prtv?
My =sp?fagp ey (i=1,2,...,k)
Seeking roots of this equation of the form
Bp = vita,s+a,s?+ 0
we obtain the equation for determining a,,

Vpian 0 ... 0 0 ¢ Cin
e e e e e et e e e et e e e e e ..

0 0 ...\’nfak;‘ 0 “ae G Cpn

2 __y.2
Chi1, 1 Cken, 2 Chet, KVRe1 T Vn® .- 0 exin |=0
0 2 v,2 ¢

¢n-1,1 %n-y,20 0 fnon s Va7 Ve faa,m

€y Cng - +Cnk 0 ... 0 2v,ia,,

In the columns numbered from k% + 1 to » — 1 , inclusively, there is only
a single nonzero element \aﬁ.,— ve , etc., hence these columns may be deleted,
together with the corresponding rows. We now multiply the last row by 1/\;,,1,
and then subtract the first column, multiplled by €,/ V,ani, from the last,
we multiply the second column by c._.h/vnaui and subtract from the last, and
so forth. As a result we cbtain

1 C]n{ () 2 (‘knz
a]“=_2_v2(—a_~+_ﬂan ++‘;’—)
and similarly n 1 22 Kk

+ 1 reft s
qy; = — —_—— KX .
) L 2"?(“11 +.‘.+akk>
The calculation of &,, (the coefficlent of &® in the expansion of the
pair of roots numbered % + 1, ... , n) shows that all of them will be purely
imaginary. Their formulas are, however, rather cumbersome and will not be
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cited. The remaining pairs of roots of the characteristic equation will be
sought in the form
B = blj/s + bys + 0 (s?)
Substituting u; into the equation, we easily obtain
1 2 __
bt = —a bt =0
To find &,, we revert to the original variables X1+ X, 8nd reduce
the force and dissipation functions

n
2U = — 3 Mizsd,

n
—2Fs = 2 aiixi'zj'
i=1 i=1
by a simultaneous orthogonal transformation to the form
n n
2U = — 2 ki'xi’z, ~—2Fs = Z aii’xi"z
i=1 i

=1
Let the kilnetic energy T take the form

2T = 2 Aija:i"xj"
in these varilables.

After these transformatlons the characteristic equation of the system is
written in the form

Iw2Ai; + 8i A% + dgyp /s [ =0
Here &,

is the usual Kronecker symbol, and &, = 6,, if {,j <<k and
equals zero for either { or j greater than % . Thus we obtain
b= — A2
J 3

As a result, 1t is clear that for large dissipative forces there will
always exist in the system solutions with small damping, and 1f the dilssipa-
tion 1s partial with rank k < p but it gives the system asymptotic sta-
bility, then there exist 2(n — kS oscillatory solutions with exponents
L . s Cljz ijz)
Pt“ivnl“zv]z(an +...4+ + 0 (s)

L33
and 2k with exponents

G=k+1,...,n)
“jl =~ _ajj /s, Psz = —l.]”s + 0 (s)
The first group of these exponents corresponds to strong damping.
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